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CONCEPTS FOR RADICALLY INCREAS~NG THE NUMERICAL 
CONVERGENCE RATE OF THE EULER EQUATIONS 

1.) Introduction 

There is considerable interest at the present time in 
solving the Euler equations to predict fluid flow. The Euler 
equations are assumed to be good approximations of the Reynolds 
averaged Navier-Stokes equations when modeling attached flows 
with shock waves and rotational effects as well as being much 
cheaper to compute because the fine details of the physical 
viscous region are neglected. 

All of the current methods of solving the Euler equations, 
for example those of Reference 1, rely on iteration procedures 
that linearize the governing equations about values at the 
previous iteration level. The impetus behind the present study 
is to determine a better function or base solution for the 
linearization in order to reduce the number of iterations and, in 
particular, to determine whether the number of iterations can be 
reduced to one. 

In Reference 2 ,  which is the report on the Phase I effort, a 
study of the transonic small disturbance (TSD) equation is 
described. The idea behind the study of the TSD equation is that 
it is a simple nonlinear equation which can represent shock 
waves. If this equation can be linearized so that shock waves 
can be represented then this technique may be transferable to the 
Euler equations. In Reference 2 applications of the transonic 
perturbation technique, developed by Nixon (Ref. 3), are 
investigated with the conclusion that a linearized solution of 
the TSD equation is feasible. However, during the course of the 
study it was found that a solution of the linearized partial 
differential equation obtained by the integral equation technique 
differed greatly from solutions obtained by a finite difference 
technique. Since it is anticipated that general solutions to the 
linearized Euler and TSD equations will be obtained by finite 
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difference methods, this is a disturbing result. It is suggested 
also in Reference 2 that a closed form solution of the TSD 
equation could be found. 

This report is concerned with extensions of the studies 
given in Reference 2, in particular a more detailed examination 
of the TSD equation and the extension to the Euler equations. It 
had been the intention to extend the investigation to include 
three dimensional flows but lack of time and funds precluded this 
step. The report is written as a series of relatively self 
contained sections to facilitate understanding. In Section (2) 
the anomaly between integral equation and finite difference 
solutions of the TSD equation reported in Reference 2 is 
resolved. The conclusion is that the finite difference technique 
applied a fictitious constraint on the solution thus leading to 
erroneous results. 

Section ( 3 )  is concerned mainly with further studies of the 
integral equation formulation of the TSD equation. One of the 
more surprising results of the study is that the original 
formulation of the transonic perturbation method given in 
References 3 and 4 is incorrect although the published results 
are correct because of a numerical smoothing in the computations. 
An important result is that an arbitrary solution of the integral 
form of the TSD equation, that is a solution that does not locate 
the shock wave, gives oscillatory behavior in the neighborhood of 
the sonic line. This oscillatory behavior is a numerical 
representation of the mathematically derived expansion shock. 
The correct shock location is that which removes these 
oscillations, which indicates that the oscillations are a 
critical consequence of the formulation. A dissipative finite 
difference solution of the linearized TSD equation removes these 
oscillations by numerical means and thus removes the necessary 
information for determining the shock location. A non- 
dissipative finite difference solution is derived which does 
locate the shock wave correctly. The results of both integral 
equation and finite difference results indicate that 
linearization of the TSD equation can lead to adequate results. 

a 
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In Section ( 4 )  an attempt to use a linearized TSD equation 
with constant coefficients is described. If sufficiently 
accurate, this would allow a transonic solution to be constructed 
using superposition of two Prandtl Glauert solutions, one 
subsonic and one supersonic. The results of this study are 
inconclusive; good results can be obtained but the technique 
seems to be very sensitive to numerical errors. 

In Section (5) the techniques developed for the finite 
difference solution of the TSD equation are applied to the 
linearized Euler equations. It is found that the odd and even 
points in the Euler solution have to be decoupled before adequate 
solutions can be obtained. It is concluded that solutions of the 
linearized Euler equations can be of adequate accuracy, although 
it must be stated that this conclusion is based on limited 
experience. 

In Section (6) a study is made of separation phenomena 
modeled by the Euler equations. It is concluded that although 
separation can be modeled by the Euler equations, it does not 
have much in common with real (physical) viscosity controlled 
separation. It is found also that specifying an empirically 
determined separation line is not consistent with the Euler 
equation formulation. Finally, it is suggested the boundary 
conditions commonly used in numerical solutions of the Euler 
equations are inconsistent. 

2.) A Study of a Discrepancy Noted in Phase I 

In the Phase I work two methods of calculating the 
linearized TSD equation were used, namely an integral equation 
method and a finite difference method. The TSD equation is 
linearized about a piecewise constant base flow with one portion 
giving an elliptic equation and the other a hyperbolic equation. 
In the finite difference solution, calculated using a modified 
version of the TSFOIL code (Ref. 5), the solution in the 
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hyberbolic zone is subsonic, while part of the flow in the 
elliptic domain is supersonic. This anomalous behavior must be 
understood before further work is since it may be due 
to inherent difficulties in the finite difference approximation. 
An example of the anomalous behavior is shown in Figure 1. 

performed 

I 
I 
I 
I 

The computational code used in these computations is TSFOIL 
(Ref. 5) which solves the equation 

where @ is a perturbation velocity potential and 
when uo = 0 the equation is elliptic and when uo = 2 
is hyperbolic. At the "sonic line" (upstream 
hyperbolic domain) the algorithm in TSFOIL puts 

= o  
+YY 

uo = 0 or 2; 
the equation 
limit of the 

since in a continuous distribution of uo, uo is unity (sonic) at 
this boundary. However, since uo is discontinuous in Equation 
(l), the application of Equation (2) makes 

(3) 

at the upstream limit of the hyperbolic zone. 

The differential equation will admit discontinuous solutions 
of the form 

+; + +; = 0 ( 4 )  

for a discontinuity normal to the x axis. Since the TSFOIL 
algorithm forces #xx to be zero at the sonic line it follows that 
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- 
+ -  ox - o; ( 5 )  

Thus the only compatible solution is 

- + ox - o; = 0 

and the flow in at least the initial part of the hyperbolic 
domain is subsonic (ox < If the flow accelerates over the 
succeeding portion of the airfoil, as is usual, then it is 
possible that at the downstream limit of the hyperbolic domain 
the velocity is still subsonic, in which case an expansion shock 
wave must exist there. This is the situation in the computations 
shown in Figure 1. The anomaly is due to the enforcement of a 
continuous ox at the "sonic" line, a condition which is not a 
solution of the differential equation. 

1). 

3.) Studies of the TSD Equation 

3.1 Introduction 

The TSD equation contains se era1 of the featu-es of the 
Euler equations, in particular the presence of shock waves. The 
equation is relatively easy to analyze compared to the Euler 
equations and will be used to provide insight into some of the 
problems arising in the linearization. 

The mechanics of correctly linearizing the TSD equation are 
examined in detail in Reference 3 .  Basically the nonlinear TSD 
equation is expanded in a power series in a small parameter, E, 
in terms of a coordinate system that is also perturbed as a 
series. This strained coordinate technique allows a valid 
perturbation even when shock waves move during the perturbation. 
The original work was for steady flow; a later extension is to 
unsteady flow (Ref. 4 ) .  The objective of this work was to 
perturb the airfoil geometry or the flow parameters to obtain a 
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solution in the neighborhood of the orl’ginal base solution. The 
objective in the present work is to allow large perturbations 
from the base solutions and thus estimate the accuracy of the 
linearized TSD equation. The base solution need not be related 
to the problem under consideration other than by the fact that it 
has a supersonic zone with a shock wave. It is pointed out in 
Reference 3 that if the base solution does not have a shock wave 
then the linearized equation cannot have a shock wave. 

The work reported in References 3 and 4 uses an integral 
equation analysis which allows a coupling of the boundary 
conditions and the velocities to form two coupled integral 
equations. These equations are easier to analyze than the basic 
partial differential equations and their associated boundary 
conditions. However, since the object of the present study is to 
extend the linearization techniques to the Euler equations, it is 
desirable to use finite difference methods because of their 
advanced state of development. Accordingly the study described 
in this section starts with a more detailed examination of the 
integral equation than that given in Reference 3 and then extends 
the basic ideas to finite difference methods. 

The first result to emerge from the study is that the 
perturbation theory given in References 3 and 4 is in error, 
although the results are correct. The reasons are given later in 
this section. It is found that the shock location is such that 
oscillations in the neighborhood of the sonic line vanish. This 
criteria, found using the integral equation, applies to the 
finite difference formulation. As a consequence it is essential 
that the finite difference approximation does not, in general, 
remove these oscillations since their presence is critical to a 
correct location of the shock wave. In this section, results 
found using mixed differencing are incorrect because the 
difference scheme removes these oscillations, thus allowing the 
shock wave to be located anywhere. 

I 
4 
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Both the integral equation an8 the finite difference 
approximations are used to compute solutions of the linearized 
TSD equation, and these results are of adequate accuracy. 

3.2 Basic Equations 

The basic transonic small disturbance equation is 

with the tangency boundary condition (for a symmetric airfoil) 

+ 0 at an The far field boundary condition is that #xf 
infinite distance from the airfoil. Change the coordinates to 
(x',y') where 

9,  

x' = x + f(x,y) 

Y' = Y + g(xfY) 
(9) 

The differential equation, Equation (7), can then be written 
as 

a a - [fx9x' + gx9y,l - ay' my 9 y r  + fy9xl 
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Denote 

Equations (10) and (11) can then be written in integral form I 
I 

using Green's identity to give 

where 

and S is the flow domain shown in Figure 2. Now let 

u = u  + u l  

v = vo + VI 

0 
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where Uo and Vo are some specified veloEities: Equation (12) then 
becomes 

where 

and 

The equations given above are exact; no approximations have 
been made. The velocities Uo, Vo are arbitrary. As a first 
approximation let 

lull < < lU0l 
lVll < < lV0l 
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such that the nonlinear terms in U1 or V1 can be neglected. 
Also, assume that products of U1 and V1 with derivatives of f and 
g can be neglected. This leads to the approximate form of the 
equation 

and 

In the general cases discussed later the y straining is not 
a function of x and hence 

This leads to the simplified equation 

N N 
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and 

N 

IL is the same as IL defined in Equation (16) but with B replaced 
by B. 

N 

where 

N 

= + ft) 

The next step in simplification is that the coordinate 
straining terms f ,  g are small and expressions containing them 
can be linearized. Thus, Equation (22) reduces to 

c 

and 

Equation (25) is further simplified by neglecting f and 

straining does not vary significantly with y; the second 
indicates there is no straining in the y direction. 

putting g zero. The first of these assumptions implies that 'I the 
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Neglecting f and g, Equation (25) can be written as 
'I 

where 

and 

- 
f = f/6xs 

where 6xs is some parameter related to the shock location. 

3 . 3  Analysis 

Equation (27) can be written in the form 

where Is is the double integral in Equation (27). This is an 

equation for the unknowns U1 and 6xs. If the integrals in 
Equation (31) are discretized then, if there are Nx points in the 
x direction and N points in the y direction, Equation (31) 
becomes a set of NT algebraic for NT values of U1 and 
Ns values of 6xs where 

Y 
equations 
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and Ns is the number of y grid lines covering the supersonic zone 
in Uo. It can be seen therefore that if there is a supersonic 
zone in Uo then there an insufficient number of equations to 
solve for the NT + NS unknowns. The additional equations are 
obtained by differentiating Equation (31) with respect to x to 
give 

is 

If Ulx is finite when Uo = 

expansion shock, then at x 
(33) gives 

1, that is U1 does not constitute an 
(the value of x when Uo = 1) Equation 

* 

(34) 
* * a  61f 

- uox u1 = -  ax {ILl + Isl%=x* + 6xs{~)'x=x* 

If the integrals are discretized as before then Equation (34) 
gives Ns equations for the Ns values of 6xs in terms of U1. 
Hence, Equations (31) and (34) are sufficient to solve for U1 and 
axs. 

The above description of the shock locating mechanism is 
adequate for the integral equation formulation but does not 
really provide much insight into how the shock is located in a 
finite difference formulation of the TSD equation. Accordingly 
some further investigation into the nature of the mechanism of 
the shock location is necessary. 

Equation (31) is an equation for U1 and, if the integrals 
are discretized, then the following matrix equation results 

Aij U lj = Bi + 6xs Ci (35) 
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where Bi is a matrix of I and Ci the matrix of If at the "i"th. L1 
grid point and Uij is the value of U1 at the jth grid point. 

Equation (35) can be inverted to give 

'lj = Aij -1 Bi + Af;[6xs Ci] 

and some criterion must be used to select 6xs. 

In the integral formulation, Equation (34) can be used in 
conjunction with Equation (31) to give a modified equation 

N N 

Aij Ulj = Bi 

N 

where AijUlj is a representation of the term 

(37) 

. 

and Bi is a representation of the term 

I /I* 
* 

Bi - I Llx, f fx' 

I 
I 
I 
I 
I 

It would appear that the use of Equation (36) would give 
some insight into the nature of the shock fitting. Consequently 
the matrix Aij was assembled and each of the terms on the right 
hand side computed. 

. 

I In order to allow for a variable shock movement the matrix 
Ci is split into components Ci ( k, where 
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and Ns is the number of grid points"in the supersonic domain. 
The matrix Ci ( k )  contains only those values of Ci on the kth grid 
line with the rest of its elements zero. When k is equal to Ns 
the matrix C!Ns) contains all of the elements in the outer 
subsonic domain in addition to those on the Nsth y grid line. 
Thus Equation ( 3 6 )  can be written as 

1 

- B3U 

ax3 

is shown and exhibits 
oscillations. This is equivalent to a solution without moving 
the shock wave. 

In Figure 3 the term Aij -1 Bi 

= o  * 
X 

If Equation ( 3 7 )  is solved, the result for U is smooth, as 
shown in Figure 4 .  the values of 6xsk calculated during this 
solution are used in conjunction with Equation (39) then the term 

lj 
If 

oscillates as is shown in Figure 5. However, the sum of both the 
terms on the right hand side of Equation ( 3 9 )  leads to the U 
shown in Figure 4 .  

l j  

From the preceding discussion it follows that the correct 
shock location is the location that removes the oscillations. An 
alternative way of locating the shock wave is to remove the 
oscillation in the solution of Equation ( 3 9 ) .  One method of 
achieving this is to enforce the condition 
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on each y grid line that has a sonic point, x . This condition 
forces the solution U in the neighborhood of x, to have curvature 
of constant sign, thus disallowing the oscillatory behavior. The 
example shown in Figure 4 was recalculated using Equation (40) 
rather than Equation (34) to locate the shock wave. The results 
of both methods were almost identical. 

Some test cases were computed using Equations (31) and (34) 
as a basis. In all the cases the base solution is a 10% biconvex 
airfoil at Moo = 0.808. A single straining function of the type 
given in Reference 3 is used. In Figure 6 the pressure 
distribution around a NACA 0010 at Moo = 0.808 is shown, 
and it may be seen that the agreement with the direct solution is 
fair. However, considering the magnitude of the perturbation 
from the base solution, the agreement with the direct result is 
more startling. A similar remark can be made about the result 
shown in Figure 7 where the pressure distribution around a NACA 
64A006 airfoil at Moo = 0.875 is shown. 

airfoil 

In the original papers on the strained coordinate method, 
Equation (34) and its unsteady flow equivalent is not used. 
However, the solution around the sonic point was obtained by a 
second order interpolation using neighboring points. This 
interpolation actually enforces Equation ( 4 0 )  and hence the 
results of References 3 and 4 are correct, although the theory 
given in their papers is incomplete since it does not explicitly 
discuss the use of a condition like that of Equation (34) or 
Equation (40). In the following discussion the causes of these 
oscillations are examined. 

3.4 Origin of the Oscillatory Behavior 

If there is no shock term, that is 6xs is zero, then 
Equation (31) can be discretized on a uniform grid to give 

ui (1 - UOi) = .c  ]=I fij Uij A <  + Bi (41) 
NT 
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where Bi is the value of ILi at the grid point i and fij At is an 
influence function that gives the contribution of U at the jth 
point to the ith point. 

j 

Velocity perturbations at points i and i + 1 on a uniformly 
partitioned grid are given as 

- Ui, then AU can be expressed as 'i+l If AU = 

where ( 4 4 )  

N 
j=1 C 

j#i, i+l 

- ci - (1 - Uo ) - f i,i A t  and A = filj Uj At. i 

Expanding all variables at the point i+l in terms of their value 
at the point i, using a Taylor series expansion, and neglecting 
the terms with second or higher order of At the following 
relation is obtained; 
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Next consider Equation ( 4 2 )  and note thit 

To the lowest order, consistent with the order of Equation ( 4 5 ) ,  

Equation ( 4 6 )  can be reduced to 

Substituting this relation in Equation ( 4 5 )  and neglecting terms 
of ( At ) the following equation is obtained. 

A similar procedure can be used to show that 

- A t  + &At 
- AU- = Ui - 'i-1 

(1-uo ) + - 
i 

( 4 9 )  

+ U and it can be seen that AU # -AU-. If oi # 1 then AU' and AU- 

approach zero as At  + o and hence laul is finite. a t  
If 

u = 1, 
Oi 

that is, at the sonic point, 

- 2 0 -  



then 

Hence U oscillates about the sonic point since 

- ui - ui - - ui+l 
'i-1 

Furthermore, as A< + 0, AU # o and hence 

which is an expansion shock. 

A measure of the amplitude of the oscillation is given by 
the second derivative, which gives in discretized form 

AB 
A <  i l i  and - I  If - are considered constant then the amplitude decays u 

cI increases. In other words, the oscillations decrease 1 as 

the further the point ti is from the sonic point. 

The conclusions reached by this analysis are consistent with 
the computational evidence shown earlier. 
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3.5 Multiple Coordinate Straininq 

It had been intended to use a multiple straining of the 
coordinates so that both the shock and the sonic line location 
could be changed; the sonic line location can be fixed at the 
location of the sonic line in the base solution Uo. This 
multiple straining would ensure that the hyperbolic domain in 
both the perturbed and base solutions would be identical in the 
strained coordinate system. Preliminary tests of this idea did 
not prove fruitful, and a modified version of the idea was 
investigated. Briefly, this modification consisted of evaluating 
the second straining parameter to minimize a weighted sum of the 
lUlil over the solution. rationale is that since the lUlil 
is a minimum in some average sense, then the error in the 
linearization process, which is of the order of lUlil, would be a 
minimum, thus improving the overall accuracy of the solution. A 
preliminary example is shown in Figure 8 where the pressure 
distribution over a NACAO010 airfoil at a Mach number of 0 . 8 0 8  

is shown. It can be seen that the effect of the second straining 
is considerable. However, this is a preliminary result and 
further work is necessary to consolidate the concept of using an 
extra straining to improve the accuracy of the solution. 

The 

2 

3.6 Summary 

In this section the concept of using the linearized TSD 
equation to model transonic flow is examined. The method does 
appear feasible. The shock wave is located by requiring that no 
expansion shocks can occur in the solution, and two methods of 
enforcing this condition with the integral equation method are 
derived. One form of this condition, Equation ( 4 0 ) ,  can be used 
in conjunction with a finite difference solution of the TSD 
equation in differential form. 
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3.7 Linearized Solutions of the Dzfferential TSD Equation 

In its simplest form the linearized TSD equation, equivalent 
to Equation (27), can be written as 

with the tangency boundary condition 

To investigate the solution of this equation the computer 
code TSFOIL (Ref. 5) is used. TSFOIL uses mixed upwind and 
central differencing to solve the nonlinear TSD equation, 
Equation (l), and special parabolic and shock point operators to 
allow a conservative transfer from one scheme to the other. The 
parabolic point operator essentially eliminates expansion shocks 
by insuring that 

@YY = o  (56) 

when 9, = 1. This condition forces to be finite. If this 
mixed difference scheme is applied to the left hand side of 
Equation (54), that is, the straining term is zero, and the term 
Uox, #lx, is evaluated with central differences then the shock 
jump condition is 

+ + U1 + Ui = AxUlx (57) 

compared to the theoretical condition 
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+ u1 + u; = 0 

The shock jump [U,] is given by 

+ + 
[U,] = 2U1 - AxUlX (59) 

Equation (54) with f put equal to zero was solved using the 
mixed difference scheme described above and the pressure 
distribution around an 11% biconvex airfoil at Moo = 0.808 is 
shown in Figure 9. The base solution is a 10% biconvex airfoil 
at the same Mach number. It can be seen that the linearized 
result is smooth and that the shock is located at the wrong 
position since it is still at the base position. There are no 
oscillations in the pressure distributions in the neighborhood of 
the s o n i c  l i n e  and consequently no apparent mechanism to 
correctly locate the shock wave. In this case the difference 
scheme, which smooths oscillatory behavior, has eliminated the 
oscillations which indicate an incorrect shock location. The 
mixed difference scheme can give plausible but incorrect 
solutions. The weakened shock jump is explained by the modified 
jump condition given by Equation (59). 

In order to obtain the correct behavior, Equation (54) is 
solved using central differencing everywhere. The result, 
without straining, is shown in Figure 10 and it may be seen that 
the solution oscillates in the neighborhood of the sonic point. 
If the straining terms are included and evaluated using Equation 
(40) then the solution is smooth in the region of the sonic lines 
can be seen in Figure 11. 

A second example, using central differencing, is shown in 
Figures 12 and 13 where the pressure distribution over a NACAOO10 
airfoil is shown. Figure 12 shows the result without coordinate 
straining and Figure 13 the result with coordinate straining. 
The Mach number and base solution are the same as for the 
previous example. 
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The grid used in these computations is relatively coarse in 
the y direction (14 points) because of computer storage problems. 
This may account for the variable accuracy of the calculations. 

From the discussions above it can be inferred that the 
finite difference algorithm used to solve the TSD equation must 
be nondissipative so as to allow oscillations to occur in the 
neighborhood of the sonic line. These oscillations are removed 
by locating the shock wave in the correct position. The fact 
that the dissipative algorithm gives a plausible but incorrect 
solution should be a warning. It is imperative that the 
mathematical aspects of the differential equation being solved 
are understood before a choice of algorithm is made. 

4.) Linear Perturbation Equations with Constant Coefficients 

4.1 Introduction 

One of the problems that arise in the previously reported 
method for linearizing the transonic small disturbance (TSD) 
equation is that the number of shock waves in the solution is 
fixed by the base solution. Since transonic flows can have 
multiple shocks, this is a severe restriction on the method since 
the number of shocks in a solution must be known a priori. A 
second problem is the behavior at the sonic line which is 
different in a finite difference approximation of the TSD 
equation than in the mathematical formulation. In the former 
oscillations appear in the neighborhood of the sonic line, while 
in the mathematical picture an expansion shock forms. If the 
solution could be linearized about two constant velocities, one 
supersonic and one subsonic, then these problems would be 
reduced. Since the transonic solution would now consist of 
combining any number of elements of the supersonic solution into 
a subsonic solution, the shock being represented by a jump from 
the supersonic solution to the subsonic solution, any number of 
shocks could be incorporated into the solution. Also, since the 
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base solutions do not pass continuously through sonic conditions 
the problem at the sonic line would disappear. The following 
analysis suggests a method of implementing this idea. 

4.2 Basic Equations 

The integral equation for the velocity, u, can be written in 
an arbitrary coordinate system as 

where IL is the Prandtl-Glauert I is a field integral 
and I Ih and If are functions from a three point coordinate 
straining with 6xo, axs being in the x-axis and 6ys a 

The terms I(u2/2), I If, Ih are straining in t h e  y-axis. 
continuous and possess continuous first derivatives. Sonic 
conditions occur when u is unity. 

velocity, 

g' 
straining 

g' 

Now let 

+ u1 u = u  
0 

where u is either 0 (a subsonic value) or 2 (a supersonic 
value). 

0 

Equation (60) can now be written as 

2 
1 2 U 

+ u ) (1 - uo) = IL + I (F) + I[(uo + ul) uol - I(uo 12) 
(uO 1 

Let an * denote values on a sonic line, (uo + u1 = 1). 

-26- 



Equation (62) can be written as .- 

2 

(1 - u0) = F + - 2 
u1 2 

u0/2 (Uo + ul) - 

where F is a continuous function. The main object is to 
determine where the solution should transfer from the subsonic 
solution to the supersonic solution and vice versa. 

* 
Let uo jump from zero to two at some x and from two to zero 

at xs. 

Differentiation of Equation (63) gives 

(uo + Ullx (1 - uo) - u ox(uo + ul) = Fx + UIUlx - U 0 U ox (64) 

or 

. 

(1 - u - ul) = Fx (uo + UlIx 0 

If the condition that uo + u1 passes smoothly though unity 
is imposed, Equation (66) gives the shock condition of the 
classic integral equation. 

Now linearize Equation (63) about uo; thus 

2 - 
u0/2 (uo + ul) (1 - uo) = F - 

where is a linearized version of F. 

* It is desired that on either side of x , uo + u1 is unity 
(sonic). Thus, 

-* + (uo + u1)- = F = - (F* - 2) = (uo + ul) = 1  

-27- 



or 

-* 
F = 1  

1 
I 

where the "+" and II-II superscripts denote values just ahead of 
and behind x respectively, Equation (68) will give an equation 
for the shock location 

* 

Differentiation of Equation (66) gives 

- N N 

(1 - uo) - u u (uo + ul)x - 
- Fx Ox 

where a tilde denotes an average value at the point of 
differentiation. Since uox is infinite at x (it is a delta 
function) and since (uo + is required to be bounded and Fx 
is finite it follows that 

* 

-* 
u1 = 0 

* * 
If uox + ulx is to be finite at x , then since uox is infinite 

* * - U - - uo 
lX X 

* 
Since u is the derivative of a step of magnitude 2 it follows 
that ulx is the derivative of a Using this 
information and Equation (70) it follows that 

*ox 
step of magnitude 2. 

- -* 
u1 = 1, u; = -1, u1 = 0 

hence, the condition that uox + ulx be * finite leads to the result 
that the sonic line occurs at x . In other words the 
linearization of the equation makes the sonic line at x . Since 
x can be put anywhere it follows that the sonic line location is 

* 
* 
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arbitrary. It is only accurate if "the (neglected) nonlinear 
terms in Equation (64) cancel. That is if 

-* -* 
* 2  -ul u1 = I x(u1/2) X 

From Equations (62) and (63) 

+ I(uluo) + [I(u0/2) 2 - uo + u0/21 2 IL u (1 - u ) = 1 0 

" 
= F  

(73) 

(74) 

A 

where F is continuous. Expanding Equation (74) as a Taylor 
series about x gives 

* 

A 
+ A  

1 u = F - AxFx 

A A - 
U1 = -(F + AX Fx) (75) 

Thus 

(76) - - Fx F = Fx 2 2Ax u u  = 
lx 

"* 
where it has been noted that F = 1. 

-* -* 
is actually a first order lx It can be seen that u U 

quantity. Hence, a linearized version of Equation (73) is 

"* 
Fx = 0 (77) 

Consider now Equation (66) at values just ahead of and behind the 
"sonic" line and denoted by the superscripts 'I+'' and "-" 

respectively. On addition, 
c)n 



+ 1 -+ - 1 Wo + u1) 2 + (u0 + u,)-] = 7 [F + F-] - 1 

or, since P is continuous, 

-* 
F = O  

(78) 

(79) 

Finally, let the shock and the sonic line coincide at the point 
(xS,ys) (the "top" of the "shock" in uo). This gives 

(6xo + xo)l = (6xs + xs)l 
YS YS 

Thus the governing equations are Equation (66) w i t h  Equation (79) 
applied at x , Equation (69), Equation (77), and Equation (80). 
These are sufficient for solving u, at N discrete points, 6xo, 
6xs on each grid line and Bys. 

* 

As a first approximation the 6ys term is neglected and only 
Equations (66), (69), (77), and (79) need be solved. 

4 . 3  Possibility of Deriving a Closed Form Solution 

I Ih are In the classic strained coordinate theory If, 
However, since u is 

piecewise constant it is instructive to use the unknown (u + ul) 
in this evaluation. 

g' 
evaluated using the base velocity, uo. 0 

0 

Consider the equation 

(1 - uo) 0, + Oyy = o  

Since uo is constant, Equation (81) can be written as 
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where 

x' = x + f(x) 

In the general coordinate straining, x' is given by 

x = x' + X,(X') 

and 

9, = (1 + fx)9,' 

It follows from Equations (83) and (84) that 

l + f x =  1 
l+Xl 

X' 

and hence Equation (82) becomes 

(84) 

X If the terms involving lX, are linearized, then Equation (87) 
becomes 
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Equation (88) can be regarded as a piecewise application of the 
subsonic and supersonic Prandtl Glauert equations in a strained 
coordinate system. Thus in the subsonic domain, Dsub, the 
equation is 

N N - 
+ 0, - [XIx' Ox'Ixl + XIXI 

and in the supersonic domain, Dsup, the equation is 

N N 

-9x'x' + 9yy = - [XIx' 9x'l - x1x'9x'x' 

N 

where $x, is some suitable (zeroth order) approximation to 
These equations could be solved piecewise analytically in 
specified subdomains, Dsub, Dsup, with the matching condition of 
Equation (72) together with the condition 

+ - v = v  

This second condition is implicit in the derivation of the 
integral equation, Equation (62). Both of these conditions are 
sufficient to choose a strained coordinate system but, as in the 
case of the integral equations, the sonic line will always be at 
x . It is not clear how a condition similar to Equation (73) can 
be implemented the differential form of the equation, and because 
of this a purely analytic solution of Equations (89) and (90) is 
probably useless. 

* 

DI 
. ,  
II 
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- 
4.4 Results 

Some results were found using the integral equation theory 
with a triangular hyperbolic region. The height of the region 
was kept fixed, that is , no y straining is used. The hyperbolic 
domain closely resembles that for the 10% biconvex airfoil at 
Moo = 0.808. The pressure distribution over a NACAO010 at 
Moo = 0.808 is calculated and shown in Figure 14. The straining 
terms are evaluated using the base solution. A second result is 
shown in Figure 15; in this case the straining terms are 
evaluated using an estimate of the final, smooth solution. The 
results are very sensitive to small changes in I and it is not 
suggested that this is a viable computation procedure. However, 
considering the size of the perturbation from the base solution, 
the accuracy of the results is surprising. 

L' 

5. Perturbation of the Euler Equations 

5.1 Introduction 

In section (3) a method of locating the shock wave in the 
linearized TSD equation that is suitable for finite difference 
solutions is derived. If these ideas are extended to solutions 
of the linearized Euler equations in this section, it is found 
that the shock wave can be located correctly but only if the odd 

and even points are separated in the solution. 

5.2 Basic Equations 

The Euler equations can be written in general coordinates 

( t ,  r l )  as 

A A 
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where 

, 

where (x, y) is a Cartesian coordinate system with velocity 
components u, v in the x and y directions respectively, p is 
pressure, p is density and e is given by 

(94) 
1 2  e = eI + 5 q 

where eI is the internal energy and q is the total velocity. U 
and V are given by 

u = E,u + v y 1  (95) 

p, u, v are normalized with respect to freestream values, denoted 
by the subscript 00, and p and pe are normalized by p, &. J is 
the Jacobian defined by 

2 

Equation (92) can be written as 

a a - [A (Q) Q ]  + q [B (Q) Q ]  = 0 a t  

where 

T A 

Q = J-l rp, PUf pvf el 
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and 

n 

A =  

B =  

0 EX 

-uu + u + (2 - 7)Exu 

-vu + 5 $J 2 Exv - (7 - l)EyU 

2 - (7 - 1)uU U[9 - a11 Exal 

Y 

-uv + 'Ix$2 

-vv + 'I 9 2 

v + ( 2  - 7)'Ixu 

'Ixv - (7 - l)'Iyu Y 

where 

'IY 
- ( 7  - W x V  'IYU 

v + ( 2  - 7)'Iyv 

'Iyal - (7 - 1)vV 

2 2 a = 7e/p - #2; +2 = (7 - 1) (u + v ) / 2  1 

and 

A n 

A = -  BE BF ,,, B = -  
BQ 

For a nonlifting airfoil, the numerical solution of Equation 
(97) requires the following boundary conditions. 

On the far field boundary, freestream values are imposed on 
all variables; this is valid strictly only for isentropic flows. 
On the body surface, = 0, 
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These boundary conditions impose zero vorticity on the airfoil 
surface, again valid only for isentropic flow. Although the 
imposed boundary conditions leave something to be desired, it is 
expected that useful insight into the solution of the linearized 
Euler equations can be gained. 

5.3 Linearized Euler Equations 

The linearization of Euler equations used in the present 
analysis is designed to be similar to that used for the TSD 
equation and, in fact, reduces to the perturbed TSD equation if 
the correct limiting processes are used. 

Equation (97) is written in a general coordinate system so 
if the x coordinate is strained such that 

x = x' + €X1(X') ( 104 1 

where (x',y) is the strained coordinate system with a straining 
parameter, 6xs, then the effect can be felt only through the 
Jacobian, J. 

The coordinates are strained as follows 
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such that 

The relations of Equations (105) and (106) are similar to those 
used in the TSD theory. The general variable Q is expanded as 

Q = Qo + EQ, (107 1 

where 

A h  

The Jacobians A, B can be written as 

h h h 

h h t 

h h h h 

where €A1 and eB1 are 
due to a change in ex, qx only .  

the perturbations of A and B respectively 

Finally, the Jacobian J is expanded as 

J = Jo + €J1 

Substitution of Equations (107), (log), 

following perturbation equations 

(110) 

and (110) yield the 
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It should be noted that 

where xo and Bo are Cartesian Jacobians and 

Ql = -  
'1 Jo 

The boundary conditions for the zeroth approximation, Equation 
(lll), are the same as those for Equation ( 9 2 ) .  

In the particular formulation of the Euler equations used 
here a change in freestream Mach number, Moo, is felt only through 
the far field boundary condition on p and e. For example, 

1 
2 rMoo 

= -  1 poo 

In order to simplify the algebra a simple test case is chosen. 
The test case is a flow with a perturbation in freestream Mach 
number, the geometry remains fixed; this allows the same grid to 
be used for both the zeroth and first approximations. A second 
simplification is that the airfoil is symmetric and at zero angle 
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I 
I 
I 
I 
I 
I 
I 
I 
1 

d 

il 
I 
I 
I' 
i 
I 
I 
I 

of attack; this allows the use 'of symmetrical boundary 
conditions, thus reducing the computer requirements. 

The boundary conditions for the perturbed, primitive 
variables are therefore as follows. 

At the far field boundary 

where E is a perturbation parameter. The perturbed flow is one 
where the freestream Mach number, M1, is given by 

1 
2 
- 

M1 = MJ(1 + E )  

On the airfoil surface, denoted by 7 = 0, boundary conditions 
similar to those in Equation (103) are used. 

On the symmetry planes the boundary conditions 

= o  u1 

- -  - 0  avl 
a t  

- -  - 0  ael 
a t  

are used. 



For the base solution, Equation (111) is solved using 
central differencing with added dissipation. This is to ensure 
that the base solution, Qo, is smooth except at shock waves. The 
linear perturbation equation, Equation (112), is solved using 
central differences with no added dissipation. At the boundaries 
first order derivatives are approximated by first order 
differences. Although done mainly for computational use, this 
has the effect of weakly coupling the odd and even points in the 
solution. Equation (112) can be written in the discretized form 

L(Q1) = B + S (119) 

where L( ) denotes the difference operator, approximating the 
left hand side of Equation (112), B denotes the boundary terms 
applicable to Equation (112) and S denotes the terms due to the 
straining function. A simplified form of Equation (119) is 
obtained by neglecting the straining term, S; thus 

The solutions of Equation (119) or (120) are obtained by direct 
inversion of the operator L. Thus Equations (119) and (120) 
become 

and 

respectively. The computations in this analysis are performed on 
a grid of 40x12 for the half plane. This is the maximum grid 
size for direct inversions. 
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The pressure coefficient found from Equation (111) is shown 
in Figure 10, and it can be seen that it is typical of those seen 
for transonic flow. The density found from Equation (120) is 
shown in Figure 17, and it can be seen that it oscillates 
considerably. This oscillation is typical of central difference 
approximations when no dissipation is added. 

In general a central difference approximation will decouple 
the odd and even points, and, although the treatment of the 
boundary conditions allows some coupling between odd and even 
points, it is instructive to look at a solution composed only of 
odd or even points. In Figures 18a and 18b the density variation 
for the odd and even points respectively are shown. It can be 
seen that the solution in the neighborhood of the sonic line is 
smooth except for a "spike;" the oscillations near the shock 
wave are due to the presence of a "nonphysical" sonic line in the 
shock capture region. Hence, it can be surmised that the same 
phenomena apparent in the TSD results exists for the "decoupled" 
linear Euler equations, that is, the solution is smooth except 
for an oscillatory behavior in the sonic region. In analogy with 
the TSD result the new shock location is enforced by requiring 
that the decoupled solutions are smooth at the sonic line. This 
is accomplished in the same manner as for the TSD equation, 
namely by enforcing the condition that 

at the sonic line. Thus, the solution procedure is to solve 
Equation (121) and determine the parameter 6xs in the term L-l( S )  

by enforcing Equation (123). The complete solution for Q is 
determined by 
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5 . 4  Results 

The pressure distribution around a NACAOO10 airfoil with 
Moo = 0.82 is shown in Figure 19 with a base solution of the same 
airfoil at Moo = 0.8. In Figure 19a the odd points are shown, and 
in Figure 19b the even points are shown. It is not clear why the 
even points should give a more accurate result than the odd 
points. 

In Figure 20 the pressure distribution around a 10% biconvex 
airfoil at Moo = 0.828 is shown with a base solution of the same 
airfoil at Moo = 0.808. The odd and even results are shown in 
Figures 20a and 20b respectively and again it may be observed 
that the even points give a more accurate result. 

I 
I 

I 
I 

There is a general problem with these Euler computations 
which is the relatively low number of grid p o i n t s .  The maximum 
number of grid points is determined by the maximum in core 
storage of the CRAY X MP machine to allow a direct inversion of 
the operator L( ) .  It is expected that the grid error in the 
decoupled points is considerable. 

5.5 Concluding Remarks 

A linearized form of the Euler equations has been developed 
and a method of locating shock wave derived. The key to the 
method is the decoupling of odd and even points and the removal 
of the characteristic oscillations at the sonic line. 

6 . )  Analysis of the Modeling of Separated Flow Using the Euler 
Equations 

6.1 Introduction 

In recent years solutions of the Euler equations have been 
used to model the flow around aircraft or missiles. The main 
advantage of the Euler equations over simpler sets of equations 
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or equations such as the potential equation is that the Euler 
equations can model nonisentropic, and hence rotational flows. 
In certain cases, especially missile flows, the ability to 
capture contact discontinuities and hence model separated flow 
has been an important feature of the Euler equations. Such flows 
have several sources of vorticity. Vorticity is generated from 
curved shock waves and in the viscous boundary layer on bodies. 
If the boundary layer flow separates from the body, a large 
vortical region is produced which can be modeled by the Euler 
equations if the necessary vorticity can be produced. For the 
Euler equations, vorticity can be produced by curved shocks, by 
certain boundary conditions, or by numerical discretization 
error. The numerical error is a somewhat nebulous quantity which 
seems to be controllable only by careful smoothing and 
optimization of the computational grid. Boundary conditions for 
modeling separation usually involve specification of the 
velocities at or around a specified separation point. If the 
separation is from missile fins then the separation point is 
taken to be the fin edges; if body separation is to be modeled 
then some empirical separation criterion is used to determine the 
separation point. Also, because of the vorticity generated by 
curved shocks and numerical error, the Euler equations can have 
solutions which contain separated flow regions even without the 
specification of a separation point. 

In this section various aspects of modeling separated flows 
on smooth surfaces using the Euler equations are examined. It is 
found that "Euler separation" can be radically different in 
behavior than real, physical separation. It is found also that a 
separation point cannot be specified arbitrarily on the body 
without further modification to the Euler equations. It is 
suggested that numerical treatments of the boundary condition may 
not be consistent with the Euler equations. 

6.2 Analysis 

The Euler equations are examined to determine the conditions 
under which separation is possible in the sense that the flow 
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t a n g e n t i a l  t o  a s u r f a c e  c a n  have  a' s t a g n a t i o n  p o i n t .  The 
v o r t i c i t y  e q u a t i o n ,  

u - v x = w  
Y 

c a n  be w r i t t e n  i n  t e r m s  of a stream f u n c t i o n  $ such  t h a t  

where w i s  t h e  v o r t i c i t y  and  

The density is given in terms of the entropy, S, and the 
veloc i ty  components U, V by 

(7-1) 2 2 2 7-1 P = P , { 1 +  2 M, [ l  - U - V 3 )  exp(-S/R) 

The v o r t i c i t y  i s  g i v e n  by Crocco's theorem as 

where R i s  t h e  gas c o n s t a n t  

q =  ( U 2 . V )  2 1 / 2  

and 

a 
a n  
- 

- 4 4 -  



I 
I 
1 
I 

is the derivative in the direction ;orma1 to the streamlines. 
Note that 

Along a streamline the entropy is constant and hence 

The pressure is given by 

tr-l) Mt [l - U 2 - V2] }7-1exp(-S/R) P = P m { 1 +  2 

Using Equations (126), (127), (128), and (129), Equation (124) 
can be written as 

-11 6S as 4, - - 9, = p, Q 7-1exp(-S/R) (U 6y - V ax) 
1 - 1 - 

+ p, ay a [Q 7-1exp(-s/R)] U - p, ax a [Q7 -&xp(-S/R)]V 

where Q is a function of U and V and is given by 

(7-1) 2 2 M, (1 - U - V2)} 2 Q =  [l + 

Equation (131) can be written as 

where f(x,y) is the right hand side of Equation (131). 
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The problem under consideration i'S the flow around a thin 
body, given by 

(134) 

where the subscripts u and 1 
of the body. 

denote the upper and lower surfaces 
The body may be at an angle of attack, a 

To some degree of approximation it can be assumed that the 
The first body boundary condition can be applied on a slit y=*O. 

approximation is thin airfoil theory which gives 

(135) 

Equation (133) can be written in integral form using Green's 
identity to give 

where C is the boundary of some domain D and v is the unit inward 
drawn normal to C. The domain D excludes all regions of the flow 
where second derivatives of tp or K do not exist, such as the body 
(represented by y = t o ) ,  wakes, shock waves, and contact 
surfaces. In Equation (136) C1 is that part of the boundary 
surrounding the point (x,y), Cw represents the boundary 
surrounding the x axis, cS the boundary surrounding the shock 
waves or contact surfaces and C, is the far field boundary. A 
sketch of the boundaries C1, Cw, Cs, C, are shown in Figure 2; to 
avoid confusion with the entropy, the domain S in Figure 2 is 

I 
I 
I 
1 
I 
1 
I 
I 
I 
I 
I 
II 
I 
I 
I 
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denoted by D in the present analysis' The kernel function in 
Equation (136) is given by 

For subsonic flow the Euler equations are elliptic and hence 
boundary conditions must be specified on the entire boundary. 
For transonic flow the flow outside of a finite domain is 
subsonic so that the same conditions must be satisfied on the 
outer boundary, C,. Equation (136) is similar to the integral 
equation for potential flow, and it may be deduced (Ref. 6 )  that 
the line integral over C, will contribute a finite velocity on C, 
as R+, if 

$ = A l n R + B  

where A and B may be functions of the angular coordinate 8 .  

If this relation is used then the line integral over C, 
becomes constant. 

On performing the various limiting operations as r+O and R+, 
Equation (136) becomes 

+ JDJKfd(dq + constant 

where for a function g ( c , q )  
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and 

E ,  and '1, are the coordinates of any surface of discontinuity and 
COS(V,~)~), cos(v,Es) are the direction cosines of the normal to 
these surfaces. [ ] denotes a jump across the surface. + 

.- 

If the jumps in derivatives of 9 ,  such as 9, and 3 are 
finite then 9 must be continuous since a jump in 9 would give an 
infinite derivative. Hence 

Y' 

The integrand of the first integral over Cs in Equation (139) 
becomes 

N 

where qt is the velocity tangential to the curve Cs. Hence 
Equation (139) can be written as 
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Equation ( 1 4 4 )  can be differentiated with respect to y to give 

By integration by parts it can be shown that 

where 

Thus Equation ( 1 4 5 )  can be written as 

On differentiation of Equation ( 1 4 4 )  with respect to x and 
performing a similar integration by parts 
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pv = - 

If the limit as y + 

following equations 
o is taken of Equations (149) and (150) the 

result 

It can be seen then that on y = *o Equation (149) gives 
only the symmetric part of pU; the asymmetric part is given by 
Equation (152) in terms of the symmetric part of ( P V ) ~  = o. 

It should be noted that in both Equation (149) and Equation 
(150) the integral over C s  may contribute a discontinuity 
depending on the orientation of C s  For example, if 
Cs is in the direction of the y axis (a normal shock wave 
perhaps) the integral over C s  in Equation (149) is continuous. 
Since the other integrals are continuous (Ref. 6), pU is 
continuous through a normal shock; this is the correct Rankine- 
Hugoniot solution. However, in Equation (150) the integral over 
Cs provides the term 

to the axis. 
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where xs is the location of the shock. This term ensures that 
Equation (150) is consistent on both sides of the shock. The 
actual value of [pV]- can be found from the jump relations, 
either for a shock wave or a contact discontinuity. 

+ 

From Equations (126) and (131) it can be seen that p and f 
(and consequently F) are functions only of U and V and the 
entropy S. The entropy is given by Equation (129) and the 
velocities just ahead of the shock wave. Thus S is a function 
only of U, V. Hence, if (PV)~ = fo is defined as a boundary 
condition Equations (149) and (150) are equations for U and V 
throughout the flow field. Because of the complexity of the 
relations for p,S and F it is not easy to determine the number of 
possible solutions. However, it is safe to say that if pV is 
specified on the body then pU and pV are determined completely in 
the flow field; pU is also determined on the body. In 
otherwords, U and V cannot both be specified on the boundary; 
this statement requires further discussion. 

It has been the practice in some problems to model separated 
flow using the Euler equations. In these methods an empirically 
determined separation line is specified. The separation line is 
such that the flow on at least one side of the resulting contact 
surface on the body surface is a stagnation point. In effect the 
method is specifying both U and V at this point and from the 
above argument this overspecifies the boundary conditions for the 
Euler equations. The necessary additional degree of freedom for 
these techniques could be introduced by an additional entropy or 
vorticity source which would mimic the absent boundary layer 
generated vorticity. 

A second point that arises is the use of extrapolation of 
the tangential velocity to get a value on the surface, for 
example, by the use of boundary conditions of the type in 
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Equation (103). These conditions speci€y the tangential velocity 
on the surface in contradiction to the above argument. 
Consequently, solutions employing this device are not solutions 
of the Euler equations, although the error is difficult to 
estimate, and the approximation may be adequate in an engineering 
sense. 

The asymmetric or "lifting" part of pU is given by Equation 
(152). This equation is similar to one in classic aerodynamic 
theory and has at least one eigensolution such that Equation 
(152) can be written as 

where 

(153) 

and A is an arbitrary constant. An additional condition is 
necessary to determine the constant. A general solution of 
Equation (153) is 

Ao(pU) - AoF = AG(x) + H ( x )  (155) 

where H(x) is the "basic" solution. Since any choice of A other 
than zero would make (Ao(pU) - AoF] infinite at the trailing edge 
the logical choice is 
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- 
A = O  (156) 

It is important to note that this condition, the classic Kutta 
condition, must be imposed either explictly or implicitly in any 
solution procedure since, in general, the Euler equations can 
give an arbitrary lift. 

As a final point it can be stated that if a separation point 
in the Euler equations is defined as a stagnation point, then for 
a symmetric body Equation (151) can conceivably give a solution 
that will make U zero at some point on the surface. The actual 
point is determined by the body geometry and by the entropy 
generated in the flow. For a lifting flow a similar situation 
arises but some measure of control on the location of the 
separation points is given by the arbitrary constant, A, 

discussed above. 

6.3 Additional Comments on "Euler" Separation 

One of the jump conditions across a vortex sheet is that 

Ap = 0 (157) 

Equations (130) and (157) then give 

where *+" and signs denote values on the upstream and 
downstream sides of the separation point respectively. 

If the velocity on the downstream side is zero, then 
Equation (158) gives 

-53- 



where 

+ AS = S - S- 

For a real value of q+ to exist 

exp(AS/c ) S 1 P 

For AS equal to zero, that is isentropic flow, 

q+ = 0 

In other words, if separation occurs in isentropic flow, the flow 
has a stagnation point at both sides of the separation. 

From Equation (161) 

s+ S s- 

If a shock wave is upstream of the separation and produces 
entropy then Equation (163) cannot be satisfied. Re-examining 
Equation (158), it is found that this implies that at the 
separation point the stagnation point should be on the upstream 
side of the separation point, in other words the separation 
streamline would be inclined in the upstream direction. This 
flow feature does not appear in experiment thus indicating some 
of the peculiarities of separation phenomena in the Euler 
equations. 
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Since the flow is attached before geparation it follows that 
for a convex surface 

& > O  an 

where n is the direction normal to the surface. 

Using Equation (130), Equation (164) becomes 

or 

If the flow is isentropic then aq/an is negative in contradiction 
to aq/an for a viscous flow which is positive. However, if 
a(S/R)/an is negative, as it will be for a shock generated 
entropy, aq/an will be positive and have the same sign as for a 
viscous flow, thus giving some realism to the flow model. 

Separation is characterized by the vorticity in the boundary 
layer. For a turbulent boundary layer an approximation to the 
vorticity is given by 

where wb is the vorticity due to the boundary layer, 6 is the 
boundary layer thickness, and qe is the velocity external to the 
boundary layer. From Equation (167) 

qe 
Wb 76 
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The vorticity generated by the shock wave is given by Crocco's 
theorem, Equation ( 1 2 9 ) ,  and can be written as 

where we is the vorticity generated by the shock wave and a is 
the speed of sound. Hence, 

E 7 6 a2 a(S/R) 7 6 a 
an 7 M 2  an 

W 
= -  - < -  2 

Wb 7qe 

where M is the local Mach number for the Euler calculation and q 
has been identified with 9,. 

The entropy rise through a weak shock is given approximately 
by (Ref. 7 )  

where M1 is the Mach number just ahead of the shock. 
assumed that 

( 1 7 1 )  

If it is 

then Equation ( 1 7 0 )  gives 

This equation indicates that the vorticity generated by 

(173) 

the shock 
is much less than that generated by the boundary layer for weak 
shocks but that as MI increases, the inviscidly generated 
vorticity can dominate. 



A crude indication of the magnitude of tdE/tdb iS given as 
follows: Let C be unity, M 2! 1, 6 = 0.01, (the boundary layer 
thickness). Finally, assume the shock length is unity and that 
the variation of M1 along the shock is linear. Hence, 

N -(M1 - 1) - aM1 
an 

The variation of the function F with MI is shown in Table 1. 

M1 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 
2.2 
2.4 
2.6 

F 

0 
0.0023 
0.0251 
0.1136 
0.3512 
0.8750 
1.8924 
3.7007 
6.7092 

Table 1 

It can be seen that the overall contribution of the shock 
generated vorticity increases rapidly with the strength of the 
shock, indicating that at the higher supersonic Mach numbers the 
vorticity field is dominated by the shock induced vorticity. 

7 . )  Concluding Remarks 

This work is concerned with developing methods for solving 
transonic flow problems using linearized forms of the TSD 
equation and the Euler equations. Methods have been developed 
using both integral equation methods and finite difference 
methods. A key element in both the TSD and Euler models is the 
use of a strained coordinate system in which the shock remains 
fixed. Additional criteria are then developed to determine the 
free parameters in the coordinate straining; these free 
parameters are functions of the shock location. 
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From an integral equation analysis it is found that the 
shock wave is located by ensuring that no expansion shocks exist 
in the solution. If a numerical solution is obtained, this 
expansion shock is represented by oscillations in the solution 
near the sonic line; the correct shock location is determined by 
removing these oscillations. In other words, the oscillations 
are a crucial element in locating the shock wave. This 
conclusion is true for finite difference solutions as well as 
integral equation solutions. Finite difference algorithms 
frequently have dissipation to remove oscillations caused by 
numerical error at shock waves. It is shown in the present work 
that such algorithms can remove the oscillations at the sonic 
line, thus eliminating the mechanism for locating the shock wave. 
An example is given of a plausible result which has the shock in 
the wrong location. The important point is that algorithms 
should reflect the mathematics of the equations. Since in many 
cases the mathematics are unknown, it is possible that commonly 
used algorithms could lead to nonphysical results. 

A second, major, study is that into the ability of the Euler 
equations to model separated flow. The investigation shows that 
the correct boundary condition is that velocity normal to the 
solid body should be zero; all other flow variables can be 
obtained from the resulting equation. Thus it is not consistent 
to specify a separation point on the body since this imposes an 
inconsistent value of the tangential velocity. The one exception 
to this statement is for a lifting case where a Kutta condition, 
which imposes a separation point, is necessary to close the 
solution. As a final point, it is shown that "Euler separation" 
does have some nonphysical features. Again, it must be stressed 
that more study of the mathematical nature of the Euler equations 
is necessary to prevent the use of algorithms that are 
inconsistent with the differential equations. 
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F i g u r e  .2.- Domain of I n t e g r a t i o n  f o r  Greens  Theorem. 
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Figure 11.- Finite difference Solution with Coordinate 
Straining (11% biconvex airfoil). 
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